Table of Contents
This document describes the main features and principles of the configuration
language called UCL
- universal configuration language.
UCL is heavily infused by nginx
configuration as the example of a convenient configuration
system. However, UCL is fully compatible with JSON
format and is able to parse json files.
For example, you can write the same configuration in the following ways:
param = value;
section {
param = value;
param1 = value1;
flag = true;
number = 10k;
time = 0.2s;
string = "something";
subsection {
host = {
host = "hostname";
port = 900;
}
host = {
host = "hostname";
port = 901;
}
}
}
{
"param": "value",
"param1": "value1",
"flag": true,
"subsection": {
"host": [
{
"host": "hostname",
"port": 900
},
{
"host": "hostname",
"port": 901
}
]
}
}
There are several features that make the UCL configuration easier to edit than strict JSON formatting:
"key": "value"
is equal to:
{"key": "value"}
:
may be replaced =
or even be skipped for objects:key = value;
section {
key = value;
}
is equal to:
{
"key": "value",
"section": {
"key": "value"
}
}
{
"key1": "value",
"key2": "value",
}
{
"key": "value1",
"key": "value2"
}
is converted to:
{
"key": ["value1", "value2"]
}
UCL allows for named keys and organizes them into a hierarchical object structure internally. For example, this process can be illustrated as follows:
section "blah" {
key = value;
}
section foo {
key = value;
}
is converted to the following object:
section {
blah {
key = value;
}
foo {
key = value;
}
}
Plain definitions may be more complex and contain more than a single level of nested objects:
section "blah" "foo" {
key = value;
}
is presented as:
section {
blah {
foo {
key = value;
}
}
}
[kKmMgG]
- standard 10 base multipliers (so 1k
is translated to 1000)[kKmMgG]b
- 2 power multipliers (so 1kb
is translated to 1024)[s|min|d|w|y]
- time multipliers, all time values are translated to float number of seconds, for example 10min
is translated to 600.0 and 10ms
is translated to 0.010x
prefix, such askey = 0xff
. However, floating point values can only be expressed in decimal base.true
or yes
or on
and false
or no
or off
.UCL supports different style of comments:
#
/* ... */
Multiline comments may be nested:
# Sample single line comment
/*
some comment
/* nested comment */
end of comment
*/
UCL supports external macros both multiline and single line ones:
.macro "sometext";
.macro {
Some long text
....
};
In addition, each macro can accept an optional list of arguments in braces. These arguments are themselves a UCL object that is parsed and passed to the macro as options:
.macro(param=value) "something";
.macro(param={key=value}) "something";
.macro(.include "params.conf") "something";
.macro(#this is multiline macro
param = [value1, value2]) "something";
.macro(key="()") "something";
UCL also provides a convenient include
macro that allows you to load the contents of another file into the current UCL object. This macro accepts either a file path or URL as an argument:
.include "/full/path.conf"
.include "./relative/path.conf"
.include "${CURDIR}/path.conf"
or URL (if ucl is built with url support provided by either libcurl
or libfetch
):
.include "http://example.com/file.conf"
.include
macro supports a set of options:
try
(default: false) - if this option is true
than UCL treats errors on loading of
this file as non-fatal. For example, such a file can be absent but it won’t stop the parsing
of the top-level document.sign
(default: false) - if this option is true
UCL loads and checks the signature for
a file from path named <FILEPATH>.sig
. Trusted public keys should be provided for UCL API after
parser is created but before any configurations are parsed.glob
(default: false) - if this option is true
UCL treats the filename as GLOB pattern and load
all files that matches the specified pattern (normally the format of patterns is defined in glob
manual page
for your operating system). This option is meaningless for URL includes.url
(default: true) - allow URL includes.path
(default: empty) - A UCL_ARRAY of directories to search for the include file.
Search ends after the first patch, unless glob
is true, then all matches are included.prefix
(default false) - Put included contents inside an object, instead
of loading them into the root. If no key
is provided, one is automatically generated based on each files basename()key
(default: target
(default: object) - Specify if the prefix
key
should be an
object or an array.priority
(default: 0) - specify priority for the include (see below).duplicate
(default: ‘append’) - specify policy of duplicates resolving:
append
- this is the default strategy. If a new object of higher priority is encountered, it will replace the old object. If a new object with lower priority is encountered, it will be completely ignored. If two duplicate objects with the same priority are encountered, a multi-value key (implicit array) will be createdmerge
- if an object or array is encountered, new keys are merged within it. If a plain object is encountered, an implicit array is created (regardless of priorities)error
- create error on duplicate keys and stop parsingrewrite
- always rewrite an old value with new one (ignoring priorities)UCL uses priorities to manage the policy of object rewriting during the inclusion of other files as follows:
By default, the priority of top-level object is set to zero (lowest priority). You can currently define up to 16 priorities (ranging from 0 to 15). If an include has a higher priority, it will overwrite keys from objects with lower priorities according to the specified policy.
UCL supports variables in input. Variables are registered by a user of the UCL parser and can be presented in the following forms:
${VARIABLE}
$VARIABLE
UCL currently does not support nested variables. To escape variables one could use double dollar signs:
$${VARIABLE}
is converted to ${VARIABLE}
$$VARIABLE
is converted to $VARIABLE
If no valid variables are found in a string, no expansion will be performed and $$
remains unchanged. This may be subject to change in future releases of libucl.
UCL can handle multiline strings as well as single line ones. It uses shell/perl like notation for such objects:
key = <<EOD
some text
split to
lines
EOD
In this example key
will be interpreted as the following string: some text\nsplitted to\nlines
.
Here are some rules for this syntax:
<<
symbols and it must consist of capital letters only (e.g. <<eof
or << EOF
won’t work);The initial and the final newlines are not inserted to the resulting string, but you can still specify newlines at the begin and at the end of a value, for example:
key «EOD
some text
EOD
Each UCL object can be serialized to one of the three supported formats:
JSON
- canonic json notation (with spaces indented structure);Compacted JSON
- compact json notation (without spaces or newlines);Configuration
- nginx like notation;YAML
- yaml inlined notation.UCL allows for the validation of objects using the json schema v4. UCL supports the full set of JSON Schema, with the exception of remote references. This feature may not be useful for configuration objects. A schema definition can also be written in UCL format, which simplifies schema writing. Additionally, since UCL supports multiple values for keys in an object, it is possible to specify generic integer constraints maxValues
and minValues
to define the limits on the number of values for a single key. UCL is not strictly enforcing validation of the schema itself, so it is important for users to provide valid schemas according to the JSON Schema v4 specification to ensure proper validation of input objects.
Is the UCL parser and emitter fast enough? Here are some performance measurements. A 19Mb file consisting of approximately 700,000 lines of JSON (obtained from https://www.json-generator.com/) was used to compare the performance of the jansson library, which handles JSON parsing and emitting, with UCL. Here are the results::
jansson: parsed json in 1.3899 seconds
jansson: emitted object in 0.2609 seconds
ucl: parsed input in 0.6649 seconds
ucl: emitted config in 0.2423 seconds
ucl: emitted json in 0.2329 seconds
ucl: emitted compact json in 0.1811 seconds
ucl: emitted yaml in 0.2489 seconds
So far, UCL seems to be significantly faster than jansson on parsing and slightly faster on emitting. Additionally, UCL compiled with optimizations (-O3) performs faster:
ucl: parsed input in 0.3002 seconds
ucl: emitted config in 0.1174 seconds
ucl: emitted json in 0.1174 seconds
ucl: emitted compact json in 0.0991 seconds
ucl: emitted yaml in 0.1354 seconds
You can do your own benchmarks by running make check
in libucl top directory.
UCL has a clear design that should make it easy to read and write. At the same time, it is compatible with the JSON language and can be used as a simple JSON parser. The macro logic allows for the extension of the configuration language (e.g. by including Lua code) and comments allow for quick enabling or disabling of parts of a configuration.